Myotonic dystrophy type 1 patient-derived iPSCs for the investigation of CTG repeat instability

نویسندگان

  • Junko Ueki
  • Masayuki Nakamori
  • Masahiro Nakamura
  • Misato Nishikawa
  • Yoshinori Yoshida
  • Azusa Tanaka
  • Asuka Morizane
  • Masayoshi Kamon
  • Toshiyuki Araki
  • Masanori P. Takahashi
  • Akira Watanabe
  • Nobuya Inagaki
  • Hidetoshi Sakurai
چکیده

Myotonic dystrophy type 1 (DM1) is an autosomal-dominant multi-system disease caused by expanded CTG repeats in dystrophia myotonica protein kinase (DMPK). The expanded CTG repeats are unstable and can increase the length of the gene with age, which worsens the symptoms. In order to establish a human stem cell system suitable for the investigation of repeat instability, DM1 patient-derived iPSCs were generated and differentiated into three cell types commonly affected in DM1, namely cardiomyocytes, neurons and myocytes. Then we precisely analysed the CTG repeat lengths in these cells. Our DM1-iPSCs showed a gradual lengthening of CTG repeats with unchanged repeat distribution in all cell lines depending on the passage numbers of undifferentiated cells. However, the average CTG repeat length did not change significantly after differentiation into different somatic cell types. We also evaluated the chromatin accessibility in DM1-iPSCs using ATAC-seq. The chromatin status in DM1 cardiomyocytes was closed at the DMPK locus as well as at SIX5 and its promoter region, whereas it was open in control, suggesting that the epigenetic modifications may be related to the CTG repeat expansion in DM1. These findings may help clarify the role of repeat instability in the CTG repeat expansion in DM1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells.

Gene-specific CTG/CAG repeat expansion is associated with at least 14 human diseases, including myotonic dystrophy type 1 (DM1). Most of our understanding of trinucleotide instability is from nonhuman models, which have presented mixed results, supporting replication errors or processes independent of cell division as causes. Nevertheless, the mechanism occurring at the disease loci in patient ...

متن کامل

Genotype–Phenotype Correlations in Iranian Myotonic Dystrophy Type I Patients

Objectives: Myotonic Dystrophy type I (DM1) is a dominantly inherited disorder with a multisystemic pattern affecting skeletal muscle, heart, eye, endocrine and central nervous system. DM1 is associated with the expansion and instability of CTG repeat in the 3chr('39') untranslated region of the myotonic dystrophy protein kinase (DMPK) gene located on chromosome 19q13.3. The aim of this study w...

متن کامل

Mutagenic stress modulates the dynamics of CTG repeat instability associated with myotonic dystrophy type 1.

The molecular basis of the myotonic dystrophy type 1 is the expansion of a CTG repeat at the DMPK locus. The expanded disease-associated repeats are unstable in both somatic and germ lines, with a high tendency towards expansion. The rate of expansion is directly related to the size of the pathogenic allele, increasing the size heterogeneity with age. It has also been suggested that additional ...

متن کامل

Somatic instability of the myotonic dystrophy (CTG)n repeat during human fetal development.

Myotonic dystrophy is characterised by the striking level of somatic heterogeneity seen between and within tissues of the same patient, which probably accounts for a significant proportion of the pleiotropy associated with this disorder. The congenital form of the disease is associated with the largest (CTG)n repeat expansions. We have investigated the timing of instability of myotonic dystroph...

متن کامل

Huntington's and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation.

Huntington's disease (HD) and myotonic dystrophy (DM1) are caused by trinucleotide repeat expansions. The repeats show different instability patterns according to the disorder, cell type and developmental stage. Here we studied the behavior of these repeats in DM1- and HD-derived human embryonic stem cells (hESCs) before and after differentiation, and its relationship to the DNA mismatch repair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017